水分子的示意图[1]
如果我们能放大去看日常放在桌子上的一杯水的话,可以看到这些水分子挨在一起,作着杂乱无章的运动。这种运动的强度由水的温度决定,温度越高,水分子运动的越快。而当我们把目光转向水和空气的界面上,事情就变得壮观起来:大量的空气分子不停地撞击界面附近的水分子,而这些水分子并不像在内部那样紧密地联系起来,不时有速度很快的水分子脱离开去,进入到空气里面,也不时有空气里面的水分子呼啸而来,又溶入到水面之中。如果杯子是敞开的,那么水会慢慢地散发到空气中,同时带走热量,这个热量叫做水的汽化热;而如果盖上盖子,那么水杯里面的水和空气就能够达到平衡,以空气里面含有一定的水蒸气,而水面维持一个动态的平衡。
空气和水的表面处,水的蒸发(来自这里)
所以,液体表面的分子含有的能量要比等量的内部分子高。大家知道,物理体系倾向于能量小的状态,因此,如果其他的因素可以忽略,液体会倾向于最小的表面积。失重状态下的液体可以形成球形的形状就是这个原因。这个倾向使得液体的表面像橡皮膜一样充满弹性,如果在水面上画一条线,那么线的一边对另外一边实际上有一个拉力,这个力被称作表面张力。在我们日常生活中来看,这个力是很小的,水面上一米长的距离上,这个力在室温下只有不到0.1牛顿(随着温度的升高,这个数值会变得更小一些)[2] ,比较起来举起两个鸡蛋需要的力大概是1牛顿。然而,当我们观察比较小长度的物理现象的时候,表面张力可以起到主要作用。
表面张力的概念并不是太好理解,然而,通过下面的两个视频大家就可以明白,为什么说液体的表面和橡皮膜类似了。在高速摄像机的拍摄下,我们能看到装满水的气球和平面碰撞时候的样子,注意看碰撞的那一瞬间水的表面一层层的波纹。
视频:
装满水的气球和平面撞击时候的样子
而当一个小水珠和荷叶相撞的时候,我们能够看到类似的现象:水珠的表面像橡皮膜一样,把水紧紧包住。看一看,这两个视频是不是很像?
视频:
小水珠和荷叶表面碰撞的过程[3]
我们知道,如果把一杯水装满,然后用一张硬纸盖住,当我们把杯子和硬纸翻过来,口朝下的时候,硬纸并不会掉下来。这是因为大气压要比硬纸上面杯子里水产生的压强大的多,完全可以支撑住硬纸。然而,如果我们用一个充满网眼的盖子盖住杯子,用硬纸盖住后反过来,然后拿开硬纸,杯子里面的水并不会通过网眼漏出来,这是因为网眼里面水面像绷紧的橡皮膜那样,支撑住了上面的水。这个魔术,是不是可以尝试一下?
视频:
第一个实验演示了空气压强,第二个实验演示了水的表面张力。水不会从有网眼的盖子里流出来,那是因为水的表面张力支撑住了杯子里的水。
(请忽略背景的杂音)把针放在水面上稍微有点困难,并不是每一次都能成功。针比水重,可是为什么针可以浮在水面上呢?从视频上大家应该可以看到,针两边的水面发生了弯折,从侧面看上去,水面应该是下面这样子的:通过水面的弯折,表面张力提供了一个向上的力,使得针或者硬币可以浮在水面上。这一点大家如果自己做实验的话应该可以看的更清晰,而且大家应该能拍出比下图更漂亮的照片。
杯子里漂浮的曲别针
这些漂浮在水面上的物体之间有着相互作用。从视频里面我们可以看到,当硬币之间的距离比较远的时候,它们之间没有什么影响,当它们互相靠近的时候,就会互相吸引在一起。而在视频和上面的照片里面,漂浮的物体都不会粘在盆边或者杯子边上。这些相互作用和水面的形状有着密切的关系。
让我们以硬币为例分析下这里的物理原因。当两个硬币离的比较远的时候,每个硬币周围的水面都是平的,只有在硬币的周围水面才会有向下的弯曲。当两个硬币距离比较近的时候,它们互相靠近就能减小之间的水面的表面积,而这样就可以减少表面势能(表面张力),因此它们之间会有相互吸引的力。
而在水面和盆或者杯子接触的地方,如果我们仔细去看,水面是向上弯折的。不同的材料和水接触的时候,它们倾向于形成的接触角度是不同的,这一点我们将会在以后仔细来说。这样,硬币和盆边水面向不同的方向弯折,把他们靠在一起将会增大水面的面积,这样会增加表面势能而不利于系统能量的最小化。所以,曲别针会喜欢呆在杯子的中央。其实,我们在日常生活中看到过很多这样子的例子。比如说,汤碗里面漂浮的油滴喜欢互相靠在一起,但是油滴并不喜欢靠在碗边上(这和油很多的时候碗边形成一圈油的情况要分开),这是因为油滴附近的水面被油滴压着向下弯折的(当然在汤里面除了油滴和水,还有蛋白质等胶体颗粒,它们渗透压也可以导致油滴靠近)。同样的,汤或者饮料表面的气泡也会互相靠在一起,而不是互相分离开来,而且碗里面的气泡会喜欢挨着碗边,这是因为气泡那的水面是向上弯折的(并且盖住整个气泡)。从瓶口看到的鲜橙多,感谢@Neil10分享图片。
最后,当我们把肥皂水倒入盆中的时候,大家可以看到,针和较重的一角硬币落了下来,而且仍然漂浮的一分硬币也变得没有之前稳定了。这是因为肥皂水改变了水的表面张力,使得水面能够提供的弹力变小了。
看了本文冗长拖沓的分析,你是否也想自己动手试试呢?
参考资料:
1.维基百科,《水》。
2. 维基百科,《surface tension》。
3. Longquan Chen et. al., J. Micromech. Microeng. 20 105001 (2010). 链接